Eulerian Network Modeling of Longitudinal Dispersion

Scientific Achievement
Developed novel Eulerian network model (Superposing Transport Method; STM) that accounts for shear dispersion

Significance and Impact
Pore-level model is able to accurately predict mixing and dispersion in CO2 sequestration

Research Details
- STM is non-local in time and is equivalent to performing network-wide time-convolutions of “elementary throat response functions”.
- Predicted macroscopic longitudinal dispersion coefficients for disordered sphere packs are in good agreement with published experimental data.

Normalized longitudinal dispersion coefficient vs. Pe_d for STM$_{par}$, STM$_{plug}$, and MCM against experimental data [Jha et al., 2011]

References
- Mehmani, Y., Balhoff, M. “Eulerian Network Modeling of Longitudinal Dispersion”, Water Resources Research, in review

Work was performed at UT-Austin
Traditional (Mixed Cell Method) Network Modeling

Flow Problem
- Mass conserved in pores
- Throats have all resistance; pores all volume

Flow Problem
- Species mass conserved in pores
- Perfect mixing assumed
- Throats have all resistance, so no shear dispersion

Mass Balance:
\[\sum_{j=1}^{n} \dot{m}_{ij} = 0 \]
\[\dot{m}_j = \frac{\rho \pi R^4}{8 \mu L} (p_j - p_i) \]

Solute Balance:
\[V \frac{dc_0}{dt} = \left(\text{accumulation} \right) \]
\[\sum_{j=1}^{N_{th}} c_j^p q_{0j} + \left(\text{convection} \right) \]
\[\sum_{j=1}^{N_p} D_m \Delta c_j \frac{\Delta c_{0j}}{L_{0j}} + \left(\text{diffusion} \right) \]
\[R(c_0) \left(\text{reaction} \right) \]

"perfect mixing" implicitly assumed!
Shear Dispersion and Superposing Transport Method (STM)

\[\frac{\partial c}{\partial \tau} + (1 - \xi^2) \frac{\partial c}{\partial \lambda} = \frac{\kappa^2}{Pe_L} \frac{1}{\xi} \frac{\partial}{\partial \xi} \left(\frac{\partial c}{\partial \xi} \right) + \frac{1}{Pe_L} \frac{\partial^2 c}{\partial \lambda^2} \]

(a) Schematic of throat, \(t_{ij} \), connected to two adjacent pores \(p_i \) and \(p_j \). The parabolic velocity profile is responsible for shear dispersion. Axisymmetric representation of throat \(t_{ij} \) undergoing (b) forward transport, and (c) backward transport.

Evolving concentration of pore \(p_i \). Horizontal lines mark where pore concentrations are recorded; shown by solid dots. Inset shows \(M=4 \) forecast points, and variables involved in eq. 14-16. (b) Schematic of typical profiles of \(q_{cd}^f \) and \(q_{cd}^B \) evaluated at \(\lambda = 0 \) and \(\lambda = 1 \).

(a) Shaded areas correspond to integrals i.e., \(WI^f \) and \(WO^f \). Comparison between CFD and the fit by eq. 20 for (b) \(q_{cd}^f(\lambda=1,\tau) \) and \(\kappa = 15 \), and (c) \(q_{cd}^f(\lambda=0,\tau) \) and \(\kappa = 1 \), for various \(Pe_R \).
Computed Dispersion Coefficients

- Dispersion coefficients back-calculated from network model
- STM (parabolic profile) matches experimental data well
- STM also predicts minimum in curve to the left. Accounting for shear dispersion is only way to predict boundary-layer dispersion
Conclusions

• STM captures shear dispersion within throats, which is not possible by any other Eulerian network model

• STM verified against convolution expressions, making it equivalent to performing network-wide convolutions of elementary throat response functions

• STM_{par} was validated against published experimental data for D_L in disordered bead/sand packs.

• Mixing assumptions within pores seem to have negligible impact on D_L predictions i.e., MCM and SSM results are indistinguishable.