Scientific Achievement

First estimate of solubility trapping, i.e. CO$_2$ dissolution, over millennial timescales.

Significance and Impact

We show that at Bravo Dome (NM) less than 20% of the 1.3 GtCO$_2$ naturally emplaced 10,000 years ago have dissolved. This indicates that solubility trapping in typical US storage formations is much slower than commonly assumed and that long-term storage security has to be ensured through other trapping processes.

Research Details

– Developed a large cross-disciplinary database for the Bravo Dome natural CO$_2$ field in New Mexico.
– Developed a purely data-based methodology to estimate the mass loss from the reservoir.
– We estimate that over 10,000 years 232 MtCO$_2$ have dissolved from a reservoir of 1.3 GtCO$_2$, approximately 10%.
– This is much slower than the only other field-based estimate that is available, but more representative of US.

Bravo Dome statistics:
1. Largest CO$_2$ field in the world.
 22 TCF of natural gas, 99.9 % CO$_2$
2. Reservoir area is 2,200 km2.
4. Gas is of volcanic origin.

Bravo Dome Data
1. 788 wells including 40 cored wells.
2. More than 40 2D seismic lines.
3. 3645 porosity & permeability data.
4. 18 noble gas and stable isotope analyses.

Best data set to study solubility trapping.
Calculation of dissolved CO$_2$

Due to the high data-density a purely data based estimate is possible.

Change in gas mass:

$$M = M_i - M_f$$

Mass at final time:

$$M_f = \phi S (p) dV = m dA$$

ϕ = porosity, S = gas saturation

ρ = gas density, p = pressure

m = mass per unit area

But we cannot directly estimate the mass at initial time!
Geochemical estimates of local dissolution

Local mass fraction of gas dissolved:

\[F = \frac{m_f}{m_i} \cdot \frac{\text{CO}_2/\text{He}_f}{\text{CO}_2/\text{He}_i} \]
Calculation of dissolved CO₂

\[M \approx \iint m \, dA = \iint m_i \, m_f \, dA = \iint \left(\frac{1}{F} \right) m_f \, dA \]

Total mass of dissolved CO₂: 232 MtCO₂
Dissolution mechanism

NE portion of the reservoir with the highest dissolved fraction:

Dissolution may be controlled by density driven convection in brine.
Implications for CCS

232 MtCO$_2$ dissolved correspond to 64 years of coal-plant emissions.

IPCC-report suggest that most CO$_2$ is trapped in 10,000 years, but at Bravo Dome less than 20% of the emplaced CO$_2$ have dissolved!

Bravo Dome is representative for many US saline aquifers: Spatially extensive, 10’s-100’s m thick, and low-k 10-100 mD.

Suggests that solubility trapping will take significantly longer in most US aquifer. Either we have to accept higher risk or long-term storage security has to be ensured by another trapping process.